Calculation Policy

"Growing and learning together with God."

Children at Fritwell Church of England School are confident and inspired.
They achieve personal success and show love and respect for all.

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 1	Year 2
C	Using Place value Count in ones / Counting in tens, e.g. knowing $45+1$ or $45+10$ without counting on in ones $23+10$ Counting on Count on in ones, e.g. $11+2=\quad 7+4=$ Count on in tens, e.g. $45+20$ as $45,55,65$ Using number facts 'Story' of $4,5,6,7,8$ and 9, e.g. $7=7+0$ or $6+1$ or $5+2$ or $4+3$ Number bonds to 10, e.g. $5+5,6+4,7+3,8+2,9+1,10+0$ Patterns using known facts, e.g. $4+3=7$ so we know $24+3,44+3,74+3$, etc.	Using Place value Know 1 more or 10 more than any number, e.g. 1 more than 67 or 10 more than 85 Partitioning, e.g. $55+37$ as $50+30$ and $5+7$ finally combining the two totals: $80+12$ Counting on $80+12=92$ Add ten and multiples of ten, e.g. $76+20$ as $76,86,96$ or in one hop $76+20$ Add two 2-digit numbers by counting on in tens then in ones, e.g. $55+37$ as 55 add 30 (85) add 7 (92) Add near multiples, e.g. $46+19$ or $63+21$ Using number facts Know pairs of numbers which make the numbers up to and including 10, e.g. $8=4 \& 4,3 \& 5,2 \& 6,1 \& 7$ and $10=5 \& 5,4 \& 6,3 \& 7,2 \& 8,1 \& 9,0 \& 10$ Patterns of known facts, e.g. $6+3=9$, so we know $36+3=39,66+3=69$, $53+6=59$ Bridging ten, e.g. $57+5$ as 57 add 3 then add 2 more Adding three or more single-digit numbers, spotting bonds to 10 or doubles, e.g. $6+7+4+2$ as $10+7+2$

Fritwell C of E Primary School - Calculation Policy October 2015

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 5	Year 6
	Using Place value Count in $0.1 \mathrm{~s}, 0.01 \mathrm{~s}$, e.g. knowing what 0.1 more than 0.51 is 100 s Partitioning, e.g. $2.4+5.8$ as $2+5$ and $0.4+0.8$ and combine the totals: $7+1.2=8.2$ Counting on Add two decimal numbers by adding the ones then the tenths/hundredths, e.g. $5.72+3.05$ as 5.72 add 3 (8.72) then add 0.05 (8.77) Add near multiples of 1 , e.g. $6.34+0.99$ or $5.63+0.9$ Count on from large numbers, e.g. $6834+3005$ as $9834+5$ Using number facts Number bonds to 1 and to the next whole number, e.g. $0.4+0.6$ or $5.7+0.3$ Add to next ten from a decimal number, e.g. $7.8+2.2=10$	Using Place value Count in 0.1s, $0.01 \mathrm{~s}, 0.001 \mathrm{~s}$, e.g. knowing what 0.001 more than 6.725 is Partitioning, e.g. $9.54+3.25$ as $9+3$ and $0.5+0.2$ and $0.04+0.05$ to get 12.79 Counting on Add two decimal numbers by adding the ones then the tenths/hundredths or thousandths, e.g. $6.314+3.006$ as 6.314 add 3 (9.314) then add 0.006 (9.32) Add near multiples of 1, e.g. $6.345+0.999$ or $5.673+0.9$ Count on from large numbers, e.g. 16,375 + 12,003 Using number facts Number bonds to 1 and to next multiple of 1, e.g. $0.63+0.37$ or $2.355+0.645$ Add to next ten, e.g. $4.62+0.38$

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 5	Year 6
	 Adding fractions with related denominators, e.g. $1 / 4+3 / 8=5 / 8$	Compact column addition for adding several large numbers and decimal numbers with up to two places $\begin{array}{r} £ 14.64 \\ +\quad £ 28.78 \\ £ 12.26 \\ \quad 11.1 \\ \hline £ 55.68 \\ \hline \end{array}$ Compact column addition with money Add fractions with unlike denominators, e.g. $3 / 4+1 / 3=11 / 12$ or $13 / 12$ $21 / 4+11 / 3=37 / 12$

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 1	Year 2
	Using Place value Count back in ones / Count back in tens, e.g. knowing 53-1 or 53-10 without counting back in ones $33-10$ Taking away Count back in ones, e.g. $11-3=15-4=$ Count back in tens, e.g. $53-20$ as $53,43,33$ Using number facts 'Story' of $4,5,6,7,8$ and 9, e.g. $7-1=6,7-2=5,7-3=4$, etc. Number bonds to 10 , e.g. $10-1=9,10-2=8,10-3=7$, etc. Patterns using known facts, e.g. 7-3 = 4 so we know $27-3=, 47-3=$, $77-4=$, etc.	Using Place value Know 1 less or 10 less than any number, e.g. 1 less than 74 or 10 less than 82 Partitioning, e.g. 55-32 as 50-30 and 5-2 combining the answers: $20+3$ Taking away Subtract ten and multiples of ten, e.g. 76-20 as 76, 66, 56 or in one hop $76-20=56$ Subtract two 2-digit numbers by counting back in tens then in ones, e.g. 67 - 33 as 67 subtract 30 (37) then count back 3 (34) Subtracting near multiples, e.g. 74-21 or 57-19 Using number facts Know pairs of numbers which make the numbers up to and including 10, e.g. $10-6=4,8-3=5,5-2=3$, etc. Patterns of known facts, e.g. $9-6=3$, so we know $39-6=33,69-6=63$, $89-6=83$ Bridge ten, e.g. $52-6$ as 52 subtract 2 then subtract 4 more Counting up Find a difference between two numbers on a line, e.g. 51-47

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 3	Ye
	Taking away Use place value to subtract, e.g. 348-300 or 348-40 or 348-8 Taking away multiples of 10,100 and $£ 1, e . g .476-40=436,476-300=176$, $£ 4.76-£ 2=£ 2.76$ Partitioning, e.g. 68-42 as 60-40 and 8-2 or $£ 6.84-£ 2.40$ as $£ 6-£ 2$ and 80p-40p Count back in hundreds, tens then ones, e.g. 763-121 as 763-100 (663) then subtract 20 (643) then subtract 1 (642) Subtract near multiples, e.g. 648-199 or 86-39 Counting up Find a difference between two numbers by counting up from the smaller to the larger, e.g. 121-87 Using number facts Number bonds to 100 e e.g. $100-35=65,100-48=52$, etc.	Taking away Use place value to subtract, e.g. $4748-4000$ or $4748-8$, etc. Take away multiples of $10,100,1000, £ 1,10$ p or 0.1, e.g. $8392-50$ or 6723 3000 or $£ 3.74-30$ p or 5.6-0.2 Partitioning, e.g. $£ 5.87-£ 3.04$ as $£ 5-£ 3$ and $7 p-4 p$ or $7493-2020$ as 7000-2000 and 90-20 Count back, e.g. 6482-1301 as 6482-1000 then - 300 then -1 (5181) Subtract near multiples, e.g. 3522 - 1999 or $£ 34.86$ - $£ 19.99$ Counting up Find a difference between two numbers by counting up from the smaller to the larger, e.g. 506-387 Using number facts Number bonds to 10, 100 and derived facts, e.g. $100-76=24,1.0-0.6=0.4$ Number bonds to $£ 1$ and $£ 10$, e.g. $£ 1.00-86 p=14$ p or $£ 10-£ 3.40=£ 6.60$
	Develop counting up subtraction Use counting up subtraction to find change from $£ 1$ and $£ 10$ Recognise complements of any fraction to 1 , e.g. $1-1 / 4=3 / 4$ or $1-2 / 3=1 / 3$	$\left.\begin{array}{rrrrr}\text { Expanded column subtraction } & \text { Begin to use compact column subtraction } \\ 600 & 110 & 16 & 6 & 11 \\ \hline 200 & 20 & 8 & 76 & 2\end{array}\right]$ Use counting up subtraction to find change from $£ 10, £ 20, £ 50$ and $£ 100$ Subtract like fractions, e.g. $3 / 8-1 / 8=2 / 8$

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 5	Year 6
C들	Taking away Use place value to subtract decimals, e.g. 4.58-0.08 or 6.26-0.2, etc. Take away multiples of powers of 10, e.g. 15,672-300 or 4.82-2 or $2.71-0.5 \text { or } 4.68-0.02$ Partition or count back, e.g. 3964-1051 or 5.72-2.01 Subtract near multiples, e.g. 86,456-9999 or 3.58-1.99 Counting up Find a difference between two numbers by counting up from the smaller to the larger, e.g. 2009-869 Find change using shopkeepers' addition, e.g. buy toy for $£ 6.89$ using $£ 10$ Using number facts Derived facts from number bonds to 10 and 100, e.g. $2-0.45$ using $45+55=$ 100 or $3.00-0.86$ using $86+14=100$ 0 Number bonds to $£ 1, £ 10$ and $£ 100$, e.g. $£ 4.00-£ 3.86 p=14$ p or $£ 100-£ 66$ using $66+34=£ 100$	Taking away Use place value to subtract decimals, e.g. 7.782-0.08 or 16.263-0.2, etc. Take away multiples of powers of 10, e.g. 132,956-400 or 686,109-40,000 or 7.823-0.5 Partition or count back, e.g. 3964-1051 or 5.72-2.01 Subtract near multiples, e.g. 360,078-99,998 or 12.831-0.99 Counting up Count up to subtract numbers from multiples of $10,100,1000,10,000$ Find a difference between two decimal numbers by counting up from the smaller to the larger, e.g. 1.2-0.87 Using number facts Derived facts from number bonds to 10 and 100, e.g. $0.1-0.075$ using $75+25=100$ or $5-0.65$ using $65+35=100$ Number bonds to $£ 1, £ 10$ and $£ 100$, e.g. $£ 7.00-£ 4.37$ or $£ 100-£ 66.20$ using $20 p+80 p=£ 1$ and $£ 67+£ 33=£ 100$.

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 5	Year 6
	Compact column subtraction for numbers with up to 5 digits Continue to use counting up subtraction for subtractions involving money, including finding change or, e.g. $£ 50-£ 28.76$ Use counting up subtraction to subtract decimal numbers, e.g. 4.2-1.74 Subtracting fractions with like denominators, e.g. $11 / 4-3 / 8$ as $1^{2} / 8^{-3} / 8$ or $10 / 8-3 / 8=7 / 8$	Compact column subtraction for large numbers Use counting up subtraction when dealing with money, e.g. $£ 100-£ 78.56$ or $£ 45.23$ - $£ 27.57$ Use counting up subtraction to subtract decimal numbers, e.g. 13.1-2.37 Subtracting fractions with unlike denominators, e.g. $11 / 4-2 / 3$ as $1^{3} / 12-8 / 12$ or $15 / 12-8 / 12=7 / 12$

	Year 1	Year 2
은	Counting in steps ('Clever' counting) Count in 2 s and 10 s Doubling and halving Find doubles to double 6 using fingers Grouping Begin to use visual and concrete arrays and 'sets of' objects to find the answers to ' 3 lots of 4' or ' 2 lots of 5', etc.	Begin to count in 3 s Doubling and halving Begin to know doubles of multiples of 5 to 100, e.g. double 35 is 70 Grouping Use arrays to find answers to multiplication and relate to 'clever' counting, e.g. 3×4 as three lots of four things and 6×5 as six steps in the $5 s$ count as well as six lots of five Understand that 5×3 can be worked out as three 5 s or five 3 s Using number facts Know doubles to double 20 Double $7=14$ Start learning $2 x, 5 x, 10 x$ tables, relating these to 'Clever counting' in $2 s, 5 s$, and 10 s, e.g. $5 \times 10=50$, and $10,20,30,40,50$ is five steps in the tens count

Fritwell C of E Primary School - Calculation Policy October 2015

Fritwell C of E Primary School－Calculation Policy October 2015

	Year 5	Year 6
	Doubling and halving Double amounts of money using partitioning， e．g．$£ 6.73$ doubled is double $£ 6$（ $£ 12$ ）plus double 73p（ $£ 1.46$ ） Use doubling and halving as a strategy in multiplying by $2,4,8,5$ and 20. E．g． $58 \times 5=1 / 2$ of 58 （29）$\times 10$（290） Grouping Multiply decimals by $10,100,1000$ ， e．g． $3.4 \times 100=340$ Use partitioning to multiply friendly 2 －digit and 3 －digit numbers by single－digit numbers． E．g． 402×6 as 400×6（2400）and 2×6（12） Use partitioning to multiply decimal numbers by single－digit numbers，e．g． 4.5×3 as $(4 \times 3)+(4 \times 0.5)$ Multiply using near multiples by rounding，e．g． 32×29 as $(32 \times 30)-32$ Using number facts Use times tables facts up to 12×12 to multiply multiples of the multiplier，e．g． $4 \times 6=24$ so $40 \times 6=240$ and $400 \times 6=2400$ Know square numbers and cube numbers	Doubling and halving Double decimal numbers with up to 2－places using partitioning，e．g． 36.73 doubled is double 36 （72）plus double 0.73 （1．46） Use doubline and halving as strategies in mental multiplication Grouping Use partitioning as a strategy in mental multiplication，as appropriate，e．g． 3060×4 as $(3000 \times 4)+(60 \times 4)$ or 8.4×8 as 8×8（64）and 0.4×8（3．2） Use factors in mental multiplication，e．g． 421×6 as 421×3（1263）doubled （2526）or 3.42×5 as half of (3.42×10) Multiply decimal numbers using near multiples by rounding，e．g． 4.3×19 as 4.3×20（ $86-4.3$ ） Using number facts Use times tables facts up to 12×12 in mental multiplication of large numbers or numbers with up to two decimal places，e．g． $6 \times 4=24$ and $0.06 \times 4=0.24$
	 NB Grid multiplication provides a default method for ALL children	Short multiplication of 2－digit，3－digit and 4 －digit numbers by 1 －digit numbers Long multiplication of 2－digit，3－digit and 4 －digit numbers by 2 －digit numbers Short multiplication of decimal numbers using x 100 and $\div 100$ ，e．g． 13.72×6 as $1372 \times 6 \div 100$ Short multiplication of money，$£ 13.72 \times 6$ Grid multiplication of numbers with up to 2 decimal places by single digit numbers Multiplying proper and improper fractions，e．g． $3 / 4 x^{2} / 3$ NB Grid multiplication provides a default method for ALL children

Fritwell C of E Primary School - Calculation Policy October 2015
Counting in steps ('Clever' counting)
Count in 2 s and 10 s

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 3	Year 4
C	Counting in steps ('Clever' counting) Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 8 \mathrm{~s}$ and 10 s by colouring numbers on the 1-100 grid or using a landmarked line Doubling and halving Find half of even numbers to 100 using partitioning. Use halving as a strategy in dividing by 2. E.g. $36 \div 2$ is half of 36 Grouping Recognise that division is not commutative, e.g. $16 \div 8$ does not equal $8 \div 16$ Relate division to multiplications 'with holes in', e.g. $\square \times 5=30$ is the same calculation as $30 \div 5=$? thus we can count in 5 s to find the answer Divide multiples of 10 by single digit numbers, e.g. $240 \div 8=30$ Using number facts Know halves of evèn numbers to 40 Know halves of multiples of 10 to 200, e.g. half of 170 is 85 Know $2 x, 3 x, 4 x, 5 x, 8 x, 10 x$ division facts Use division facts to find unit and simple non-unit fractions of amounts within the times tables, e.g. $3 / 4$ of 48 is $3 \times(48 \div 4)$	Counting in steps - sequences Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}, 7 \mathrm{~s}, 8 \mathrm{~s}, 9 \mathrm{~s}, 10 \mathrm{~s}, 11 \mathrm{~s}, 12 \mathrm{~s}, 25 \mathrm{~s}, 50 \mathrm{~s}, 100 \mathrm{~s}$ and 1000s Using number facts Know times tables up to 12×12 and all related division facts Use division facts to find unit and non-unit fractions of amounts within the times tables, e.g. ${ }^{7} / 8$ of 56 is $7 \times(56 \div 8)$
旡		Written version of a mental method $\begin{aligned} \square \times 3 & =86 \\ 20 \times 3 & =\frac{60}{26} \\ 8 \times 3 & =\frac{24}{2} \end{aligned} \quad 84 \div 3=28 \mathrm{r} 2$

Fritwell C of E Primary School - Calculation Policy October 2015

	Year 5	Year 6
	Doubling and halving $\begin{aligned} & \text { Halve amounts of money using partitioning, } \\ & \text { e.g. half of } £ 14.84 \text { as half of } £ 14 \text { and half of } 84 p\end{aligned}$ Use doubling and halving as a strategy in dividing by $2,4,8,5$ and 20, e.g. 115 $\div 5$ as double $115(230) \div 10$ Grouping Divide numbers by $10,100,1000$ to obtain decimal answers with up to three places, e.g. $340 \div 100=3.4$. Use the $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }} \ldots$ multiple of the divisor to divide friendly 2 -digit and 3 digit numbers by single-digit numbers, e.g. $186 \div 6$ as 30×6 (180) and 1×6 (6) Find unit \& non-unit fractions of large amounts, e.g. $3 / 5$ of 265 is $3 \times(265 \div 5)$ Using number facts Use division facts from the times tables up to 12×12 to divide multiples of powers of ten of the divisor, e.g. $3600 \div 9$ using $36 \div 9$ Know square numbers and cube numbers	Doubling and halving Halve decimal numbers with up to 2-places using partitioning, e.g. half of 36.86 is half of 36 (18) plus half of 0.86 (0.43) Use doubling and halving as strategies in mental division, e.g. $216 \div 4$ is half of 216 (108) and half of 108 (54) Grouping Use $10^{\text {th }}, 20^{\text {th }}, 30^{\text {th }}, \ldots$ or $100^{\text {th }}, 200^{\text {th }}, 300^{\text {th }} \ldots$. multiples of the divisor to divide large numbers, e.g. $378 \div 9$ as $40 \times 9=360$ and $2 \times 9=18$ so the answer is 42 Use tests for divisibility, e.g. 135 divides by 3 as $1+3+5=9$ and 9 is in the $3 x$ table Using number facts Use division facts from the times tables up to 12×12 to divide decimal numbers by single-digit numbers, e.g. $1.17 \div 3$ is $1 / 100$ of $117 \div 3$ (0.39)
发	$\begin{array}{r} 1264 \\ 6 \longdiv { 7 ^ { 1 } 5 ^ { 3 } 8 ^ { 2 } 4 } \end{array}$	Short division of 3-digit and 4-digit numbers by single-digit numbers \square $\begin{array}{r} 1264 \\ 6 \longdiv { 7 ^ { 1 } 5 ^ { 3 } 8 ^ { 2 } 4 } \end{array}$ Long division of 3-digit and 4-digit numbers by two-digit numbers Divide fractions by whole numbers, e.g. $1 / 4 \div 3=1 / 12$

